Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 47

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Transient analyses of hydraulic head in the fault slip experiments in fracture zones of Shionohira and Kuruma Faults

Wakahama, Hiroshi*; Nojo, Haruka*; Aoki, Kazuhiro; Imai, Hirotaro; Guglielmi, Y.*; Cook, P.*; Soom, F.*

Oyo Chishitsu, 64(5), p.236 - 254, 2023/12

Upon the Hamadori earthquake (Mw 6.7) of 11 April 2011, coseismic surface deformation of 14 km running NNW to SSE in southeast Fukushima Prefecture occurred and was newly named the Shionohira Fault. However, no surface deformation was observed along the Kuruma Fault which is a southern extension of the Shionohira Fault. Fault injection tests using SIMFIP method at the Shionohira site on the former active segment and the Minakamikita site on the latter inactive segment were conducted to evaluate the activity of the two faults. Based on hydraulic responses to water injection into the fault rupture zone in the monitoring boreholes at the two sites, hydraulic properties of the area across the fault zone were estimated using the GRF model (Barker, 1988). The results obtained on hydraulic conductivity, specific storage and flow dimension were consistent with those in the domestic and international literature. The hydraulic conductivity and specific storage were larger in Shionohira than in Minakamikita. The flow dimension of Shionohira was three-dimensional, while that of Minakamikita was found to be a two-dimensional fractional flow. In addition, it is understood that the volumetric expansion occurs in the former site in the triaxial direction and the latter in the uniaxial with the comparison between the uniaxial expansion coefficient calculated from the results of SIMFIP displacement measurements and the specific storage in the hydraulic analysis. The difference in the hydraulic parameters between the two sites corresponded to the difference in the spatial development of fractures considered to be the "water passway," indicating the possibility of a correlation between the parameters and the different possible causes for fault activity at the two sites.

Journal Articles

Distribution of Quaternary volcanic dike under the edifices and evaluation of central conduit stability by topographic analysis using contour lines

Nishiyama, Nariaki; Kawamura, Makoto; Umeda, Koji*; Niwa, Masakazu

Oyo Chishitsu, 64(3), p.98 - 111, 2023/08

It is important to accumulate research examples on the spatial distribution of dikes under volcanic edifices for risk assessment in volcanic disaster prevention and site selection and safety assessment for the geological disposal of high-level radioactive waste. The topography of volcanoes is considered to represent the location of magma intrusion associated with volcanic activity and its history. In this study, we attempted to determine the predominant orientation of radial dikes and evaluate the central conduit stability based on the distribution, centroid, and area of contour lines comprising the volcanic edifices using GIS-based topographic analysis. As a result of the topographic analysis, the predominant orientation of the dikes was successfully shown for the volcanoes with stable conduits. On the other hand, this analysis was not suitable for determine the predominant orientation of dikes in volcanoes with unstable conduits, thus the applicable range of this analysis is considered to be determined by the conduit stability. In addition, the conduit stability can be evaluated by using the area data of contour polygons, which represents the scope of application to the method for determination of the predominant orientation of dikes. This means that the conduit stability during volcanic activity can be evaluated even for volcanoes of which activity history is not yet known, and that topographic analysis is a useful tool for this purpose. The use of topographic analysis in this study will be expected to provide a new scale for the history of volcanic activity.

Journal Articles

Proposition of confirmation items on the borehole sealing for the disposal of radioactive waste

Murakami, Hiroaki; Nishiyama, Nariaki; Takeuchi, Ryuji; Iwatsuki, Teruki

Oyo Chishitsu, 64(2), p.60 - 69, 2023/06

In order to confirm the quality control items for borehole closure in radioactive waste disposal projects, in-situ borehole sealing tests using bentonite material were conducted. As a result, the closure performance was successfully demonstrated by comparing the data of water injection tests conducted before and after the installation of the closure material. However, the breakthrough was observed after closing, probably due to high differential pressure applied to the seal section. Thus, it is important to ascertain throughout the entire operation that the borehole is adequately closed. The placement and specifications of the closure material should be determined according to the hydrogeological structure in the borehole. The confirmation items to use bentonite for sealing material are identified to be: to consider swelling and density loss in the borehole; to place the planned depth using appropriate emplacement technique; to be placed without damage to seals when use some backfilling materials, considering effect of permeability on adjacent seals.

Journal Articles

Discrimination between active and non-active faults based on the chemical composition of fault gouge; An Attempt using linear discriminant analysis

Tateishi, Ryo*; Shimada, Koji; Shimizu, Mayuko; Ueki, Tadamasa*; Niwa, Masakazu; Sueoka, Shigeru; Ishimaru, Tsuneari

Oyo Chishitsu, 62(2), p.104 - 112, 2021/06

AA2020-0092.pdf:4.61MB

We attempted to discriminate between active and non-active faults by linear discriminant analysis using the chemical composition data of fault gouges in Japan, and then examined the elements that represent the difference between them and better discriminants. As a result, the multiple discriminants obtained could discriminate between them with high probability. In addition, the generalization performance of these discriminants is discussed, and the discriminants that can be expected to have high discriminant performance for unknown samples are presented. Also, from the combination of elements common to these discriminants, we narrowed down the number of elements that represent the difference between active and non-active faults to 6, and showed that the combination of TiO$$_{2}$$ and Sr contributing the most to the discrimination. The method applied in this study is an innovative one that can discriminate the activity by chemical analysis of fault rocks that are universally present in the bedrock.

Journal Articles

Characteristics of fault fracture zones of the activated Shionohira Fault and the non-activated Kuruma Fault of the 2011 Fukushima-ken Hamadori Earthquake, Northeast Japan

Aoki, Kazuhiro; Tanaka, Yukumo; Yoshida, Takumi; Shimada, Koji; Sakai, Toru*; Kametaka, Masao*; Seshimo, Kazuyoshi

Oyo Chishitsu, 62(2), p.64 - 81, 2021/06

Co-seismic surface ruptures in the Fukushima-ken Hamadori Earthquake of Mw 6.7 on April 11, 2011 exposed approximately 14 km trending NNW-SSE from Nameishi to northwest of Ishizumi Tsunaki of Tabito Town, Iwaki City and were newly named the Shionohira Fault. However, no surface ruptures appeared along an N-S trending active Kuruma fault extending 5 km south of the Shionohira Fault. Because of the proximity and similar strike, two locations in Shionohira Fault and one location in Kuruma fault were selected as the study area for the fault activity evaluation. The present study reports the results of a series of geological and drilling surveys, core observation, XRD, isotope, and fluid inclusion analyses, and water permeability test. The results obtained from the three locations offer a fundamental data base that can be utilized for fault activity evaluation by summarizing the geological, mineralogical, and fluid property characteristics of fault fracture zone.

Journal Articles

Provenance analysis using rapid quantification of heavy minerals via EPMA; A Case study in the Horonobe region, Hokkaido, northern Japan

Yonaga, Yusuke; Sano, Naomi*; Amamiya, Hiroki*; Ogita, Yasuhiro; Niwa, Masakazu; Yasue, Kenichi*

Oyo Chishitsu, 62(1), p.2 - 12, 2021/04

Provenance analysis based on quick identification of heavy minerals using an electron probe microanalyzer (EPMA) was applied to samples from Pleistocene sediments in Horonobe region, Hokkaido, where major provenance rocks can be sedimentary and mafic igneous rocks. The concentrations of 16 elements were measured in individual grains to identify the mineral species based on their chemical composition. In addition, microscopic observation of thin sections and gravel composition analysis were conducted to confirm the validity of the quick identification of heavy minerals. These analyses clarify that combinations of several heavy mineral species can be a useful index of provenance rocks from the Soya Hill and Teshio Mountains, and suggest that uplift of the Soya Hill after ca. 1.5 Ma constrained supply of sediments from the Teshio Mountains. On the other hand, minerals uncommon both in the Soya Hill and Teshio Mountains, such as hornblende, are included in the Pleistocene sediments. This suggests that a sediment supply from distant area was also significant, like transportation by the Teshio River. The method for quick identification of heavy minerals using EPMA can provide an information about provenance rocks difficult to identify only by gravel composition analysis.

Journal Articles

Characteristics and formation process of fractures in crystalline rocks in northern Kyushu

Murakami, Hiroaki; Ashizawa, Masaomi*; Tanaka, Kazuhiro*

Oyo Chishitsu, 59(1), p.2 - 12, 2018/04

This study describes the features of fractures and their fillings along with the long-term behavior of their hydrogeological structures in an underground environment based on the results of a geological investigation conducted at an underground facility in northern Kyushu. Fractures were classified into five groups on the basis of fracture orientation: A, B, C, D, and low-angle groups. The genesis of all fractures is the cooling process of granodiorite pluton. Almost all of the water-conducting fractures are included in the B group. Because a number of fracture fillings in the B group are filled by prehnite and crushed fragments of epidote and quartz, the fractures in this group alternated sealing and re-opening. The fracture characteristics in the B group are follow as: accompanying many alteration halos, long trace length, and cutting off other fractures. These results indicate that fractures in the B group have possibly functioned as pathways for groundwater flow in the long term.

Journal Articles

Examination of evaluation method for fault activity based on morphological observation of fault planes

Tanaka, Yoshihiro*; Kametaka, Masao*; Okazaki, Kazuhiko*; Suzuki, Kazushige*; Seshimo, Kazuyoshi; Aoki, Kazuhiro; Shimada, Koji; Watanabe, Takahiro; Nakayama, Kazuhiko

Oyo Chishitsu, 59(1), p.13 - 27, 2018/04

This paper aims to develop a methodology for understanding the fault activity by observing exposed fault planes without covering younger strata. Based on purpose, faults developed in relatively homogeneous rocks such granitic types are investigated as follows; Gosuke Dam upstream outcrop of Gosukebashi Fault and Funasaka-nishi outcrop of Rokkou Fault were selected for the study of an active fault; and K-3 outcrop of Rokkou Houraikyo Fault was chosen for a non-active fault.

Journal Articles

Consideration of methodology for estimating hydrochemistry based on results of resistivity logging in deep boreholes

Mizuno, Takashi; Iwatsuki, Teruki; Matsuzaki, Tatsuji*

Oyo Chishitsu, 58(3), p.178 - 187, 2017/08

no abstracts in English

Journal Articles

Development of new method for evaluating the mineral distribution and mode; Quantitative image analysis using the elemental maps obtained by the scanning X-ray analytical microscope

Ishibashi, Masayuki; Yuguchi, Takashi*

Oyo Chishitsu, 58(2), p.80 - 93, 2017/06

Mode of granitic rocks is important information for evaluating their formation process, characterizing fracture distribution and understanding mass transfer in the rock matrix. However, previous methods to evaluate the mode of granitic rocks have several issues. Thus, this study provides the new image analysis method (MJPD method) using scanning X-ray analytical microscope for evaluation of mineral distribution and mode including the secondary minerals. The MJPD method can deal with the heterogeneity of elemental distribution in each mineral. For evaluating the applicability of MJPD method, the method was applied to elemental maps of thin sections. As a result, it was found out that the mineral distribution and mode are easily evaluated by MJPD method using the elemental maps measured in approximately 10,000 seconds. In addition, the MJPD method can be potentially applied to the elemental maps obtained by other analytical instrumentation such as EPMA and SEM-EDS.

Journal Articles

Evaluation of fractures in a rock as flow paths around tunnel using ground penetrating radar

Masumoto, Kazuhiko*; Takeuchi, Ryuji

Oyo Chishitsu, 57(4), p.154 - 161, 2016/10

Fractures developing around the tunnel during the excavation result in issues related not only to the mechanical stability of the rock cavern, but also to the groundwater flow paths. In order to estimate the possibility of application of the GPR (Ground Penetration Radar) to estimate the fractures as low paths, the authors conducted the GPR survey along the side wall of 500 m access tunnel of the Mizunami Underground Research Laboratory of JAEA. The results of the profile measurements indicated that water-conductiong fractures were detected as a reflected waves using GPR survay. Furthermore, as the results of fixed-point measurements during the injection of the saline water, it could be indicated to estimate the flow paths of saline water in the fractures, in a non-destructive way, based on spectral analysis in the reflected waveforms of GPR.

Journal Articles

Geological mapping on the shafts and galleries walls on the Mizunami Underground Research Laboratory project

Tsuruta, Tadahiko; Sasao, Eiji

Oyo Chishitsu, 56(6), p.298 - 307, 2016/02

Japan Atomic Agency (JAEA) are performing Mizunami Underground Research Laboratory project (MIU project), which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Geological investigations, reflection seismic surveys, borehole drilling, etc., are carried out to understand the distribution and properties of important geological structures (permeable fractures, faults, etc). This report summarizes specifications and data characteristic of geological mapping on the shafts and gallery wall, and describes contributions to developments of geological model based on the results of geological mapping.

Journal Articles

Predictions of transmissivity of fault zones from strength-stress conditions of rocks

Ishii, Eiichi; Matsuoka, Toshiyuki; Saegusa, Hiromitsu; Takeuchi, Ryuji

Nihon Oyo Chishitsu Gakkai Heisei-27-Nendo Kenkyu Happyokai Koen Rombunshu, p.135 - 136, 2015/09

no abstracts in English

Journal Articles

Development of borehole fracture column and spatial distribution of fracture systems; Case study at the Grimsel test site (GTS, Switzerland)

Tsuda, Hidenori

Oyo Chishitsu, 55(5), p.216 - 228, 2014/12

Regarding grouting of geological disposal repository, geological research that shows the site specific existent condition and aggregation form of rock fractures reached ca.1000 m underground, which buried high-level radioactive waste, is necessary, by a limited number of rock boring survey in the earlier stage of the site investigation. And this fundamental problem holds the key to the success and failure of modeling, design and construction of grouting. This paper introduces rock fractures boring column by simulant real boring core, and attempted to overview of fractures perspective intervening and outer space of borings based on the cross-sectional representation of fractures. Using fractures column, each fracture's location, orientation, and those morphological combination forming fractures aggregate zone are shown systematically. In addition, the relationships between rock fractures and geological features, rock grading are shown in parallel.

Journal Articles

Characterization of water conducting fracture and their long-term behavior in deep crystalline rock; A Case study of the Toki granite

Ishibashi, Masayuki; Ando, Tomomi*; Sasao, Eiji; Yuguchi, Takashi; Nishimoto, Shoji*; Yoshida, Hidekazu*

Oyo Chishitsu, 55(4), p.156 - 165, 2014/10

Understanding of long-term history of water-conducting features such as flow-path fractures is key issue to evaluate deep geological environment for geological disposal of high-level radioactive waste (HLW). Thus, we conducted study on the geological features and the long-term behavior of flow-path fractures based on the data obtained at -300m levels in the Mizunami Underground research laboratory (MIU), central Japan. Total 1670 fractures were mapped in underground gallery at the -300m levels. Flow-path fractures occupy about 11% of all fractures. The flow-path fractures are divided into grout filling fractures and low inflow-rate fractures. All of the grout filling fractures is filled with calcite as fracture filling minerals without conspicuous host rock alteration around fractures. The low inflow-rate fractures possessed similar geological character with the sealed fractures which are not acted as flow-path. The geological character of fracture filling and host tock alteration around fractures indicates the history of the formation at the time of intrusion and emplacement of host granite (Stage I), then filling at hydrothermal event (Stage II), and finally opening and elongation during exhumation stage (Stage III). In conclusion, the present flow-path fractures were formed by opening and/or elongation of pre-existed fractures, which were filled at the hydrothermal event, at the time of exhumation.

Journal Articles

Fractures distribution around underground gallery in sedimentary rock area

Nohara, Shintaro*; Nakata, Eiji*; Suenaga, Hiroshi*; Tanaka, Shiro*; Kubota, Kenji*; Oyama, Takahiro*; Kondo, Keiji

Nihon Oyo Chishitsu Gakkai Heisei-25-Nendo Kenkyu Happyokai Koen Rombunshu, p.129 - 130, 2013/10

no abstracts in English

Journal Articles

Airborne radiation monitoring technique; The Current conditions and the future prospects

Sanada, Yukihisa; Torii, Tatsuo

"Higashi Nihon Daishinsaigo No Oyo Chishitsugaku, Aratana Kadai Toshiteno Haikibutsu Shori To Hoshano Osen" Yokoshu, p.28 - 36, 2013/06

The airborne radiation monitoring technique is developing rapidly by the improvement of the pinpointing technology such as the GPS and the spread of GIS technologies. In addition, a technique to measure the wide area in a short time is demanded. Here, we speak the development of the aiborne radiation measurement technology that JAEA performs since a Fukushima Dai-ichi Nuclear Power Plant accident.

Journal Articles

Tephra stratigraphy of Toki Sand and Gravel Formation on the Nenoue highland; Correlation of widespread tephra deposits by major element chemistry of glass inclusions in quartz

Furusawa, Akira*; Yasue, Kenichi; Nakamura, Chisato*; Umeda, Koji

Oyo Chishitsu, 54(1), p.25 - 38, 2013/04

Distinguishing strongly weathered tephras is very difficult because major-element chemistry of volcanic glasses is affected by weathering. On the other hand, it recently became clear that major-element analysis of glass inclusions in quartz and plagioclase is an effective method of investigating strongly weathered tephras. We studied the weathered tephras in the Toki Sand and Gravel Formation (TSG) located on the Nenoue highland, in the hanging wall of the Byobuyama fault. The TSG consists mainly of gravel beds with intercalated clay-sand beds in the lower and middle horizons. Glass inclusions in the quartz occur only in the weathered clay-sand beds. We found that the glass inclusions in the quartz in the middle horizons of the TSG provide the best correlations with those in the Minamidani-1 tephra deposits in the Kinki, Chubu and Shin-etsu Districts.

Journal Articles

Study on evaluation method of potentional geological environmenral changes of "uplift and erosion" for performance assessment on a high level radioactive waste geological disposal system

Kawamura, Makoto; Ebashi, Takeshi; Makino, Hitoshi; Niizato, Tadafumi; Yasue, Kenichi; Inagaki, Manabu; Oi, Takao

Oyo Chishitsu, 51(5), p.229 - 240, 2010/12

Uplift, subsidence, denudation, and sedimentation are phenomena over long-term in a regional scale. It is difficult to ignore the impacts of those phenomena on a disposal system completely in long-term. Therefore, type and extent of the impacts on geological and disposal environmental conditions, and disposal systems need to be evaluated quantitatively in order to develop perturbation scenarios. We have been developing a systematic methodology to develop perturbation scenarios based on the appropriate understanding of those phenomena. The variety of the change of geological environment and evolution pattern of the environment, which are caused by the variation of the uplift, subsidence, denudation, sedimentation phenomena and those rates, are understood by arranging the information in the framework of the thermal-hydrological-mechanical-chemical-geometrical (T-H-M-C-G) system, and the impacts of those environmental change to the performance of the repository system are also examined by using the T-H-M-C-G system. In this study, firstly, the potential changes of the geological environment were identified by examination of possible combinations of the uplift/denudation and subsidence/ sedimentation. The effects of the initial environmental condition are also considered. Geohistorical information and View of Modern analogue theory should be used in this stage. This procedure is essential to set up the scenarios regarding uplift/denudation and subsidence/sedimentation, to clarify the trend and/or range of the change of the geological environmental conditions. Then, the phenomena which give the large impacts to a disposal system were extracted based on the T-H-M-C-G system. By applying the developed framework which deals with the impacts on the HLW disposal system realistic view and builds evaluation scenarios and models based on step wise manner, we acquired the prospect that realistic uplift and denudation scenario could be built to this examination procedure.

Journal Articles

Characteristics of high angle fractures distributed in granite of MIU (Mizunami Underground Research Laboratory)

Tagami, Masahiko; Ishida, Hideaki; Tsuruta, Tadahiko

Nihon Oyo Chishitsu Gakkai Heisei-21-Nendo Kenkyu Happyokai Koen Rombunshu, p.175 - 176, 2009/10

Fractures in crystalline rocks have exerted a big influence on the underground water stream. It is necessary to understand the fracture shape and distribution from the viewpoint of the material transfer and the safety construction in designing the geological disposal facilities of the high-level nuclear waste. In this report, we examined the fracture characteristics along the horizontal tunnel which was named -300m Access/Research gallery in Mizunami Underground Research Laboratory. Spring water that exceeded 1000 liters per minute was confirmed in the horizontal boring investigation along the tunnel before gallery excavation. We considered the fracture formation process and the function as the passage of water.

47 (Records 1-20 displayed on this page)